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Abstract

Conventional homogenization methods are based on the assumption that the material is statistically
homogeneous[ However\ if a material exhibits strain softening behaviour and localization of deformation\
this assumption is no longer valid[ The obvious solution is to extend the state of the material point with
additional statistical moments of the state of the RVE[ When long range e}ects are incorporated into the
continuum mechanical description of the material\ in the form of supplementary degrees of freedom\
these so!called non!local models are capable of describing strain softening[ In this paper\ a perforated
polycarbonate plate is used as a model material[ The mechanical behaviour of the RVE will be described
by using a compressible Leonov model\ which accounts for the time dependent\ large strain behaviour\
characteristic for solid polymers[ At the macroscopic level\ non!linear elastic Cosserat mechanics is applied
for the equivalent homogeneous material[ It is shown to be possible to determine the macroscopic constitutive
equations for the equivalent continuum[ As application\ a tensile test on a single edge notched specimen will
be discussed and compared to {direct simulations|[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Composite materials are used more and more for load carrying components in structures\
since their mechanical properties\ such as strength\ sti}ness\ and toughness are being improved
continuously[ On the microscopic level\ these materials reveal a structure in which di}erent
components can be distinguished[ Examples of heterogeneous materials are composites\ polymer
blends\ alloy systems\ ceramics\ paper\ wood and bone[ During loading of the material\ micro!
mechanical failure mechanisms\ such as matrix crazing or cracking\ void formation and _bre!
matrix debonding\ are frequently encountered\ which may result in macroscopic so!called strain
softening behaviour[ This is a decreasing stress with increasing strain[ The obvious in~uence of the
microscopic deformation on the macroscopic behaviour was shown experimentally for polymer
blends by Van der Sanden "0882# and Coomans "0884#[ The importance of parameters like the
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average distance between the heterogeneities\ the diameter and the spatial distribution of the
inclusions appeared to be quite substantial[

When developing new materials\ insight in these phenomena is required[ Relations between the
micromechanical failure mechanisms and the macroscopic deformation behaviour are necessary
for predicting macroscopic properties from the microstructure[ This will enable the material
engineer to adapt the microstructure to obtain the desired mechanical properties\ such as high
sti}ness\ strength or toughness[ This is called material design[ Another application of this relation
is the design of structures[ Here\ the macroscopic material model "i[e[\ the constitutive equations#\
serves as input of a simulation program or an analytical calculation[ Complete structures can then
be simulated yielding the desired overall response[

The growing interest in material design has resulted in an increasing demand for robust
analytical:numerical procedures to determine macroscopic material properties\ relating the micro!
structural response with the overall macroscopic behaviour[ This procedure is called homo!
genization "e[g[\ Vosbeek\ 0883#[ The homogenization process aims at replacing the macroscopic
heterogeneous material with a continuum model the {best| represents the structural model[ This
process can be summarized in the following two steps] "0# the macroscopic state variables "e[g[\
stresses and strains# have to be de_ned in terms of those of the microscopic model^ "1# the relation
between the evolution of the global state and the evolution of the local state has to be determined[
Of course\ the second step amounts to determining the constitutive relations[

Regarding the _rst step\ we have to investigate how the continuum state might be de_ned[ To this
end\ we _rst de_ne two characteristic length scales] L\ the typical dimension of the "macroscopic#
specimen and l\ the characteristic length of the variations of the state of the medium about its
average[ Now\ let us assume that "i# both L and l are large compared to a distance\ a say\ within
which the material properties undergo considerable variation about their mean value[ This is
usually referred to as the separation of scales principle "Auriault\ 0880#^ "ii# the character of the
variations in an element of size a2 in one part of the sample is of the same sort as the variations in
another part of the sample[ A material that satis_es both these properties\ is said to be statistically
homogeneous "Beran\ 0857#[

From the second item\ it follows that an element of size a2 can be identi_ed whose mechanical
behaviour is representative for the heterogeneous medium as a whole[ Such an element is called a
representative volume element\ or short\ RVE[ The _rst condition now states that a is much smaller
than both L and l[ The fact that a is much smaller than L implies that the RVE is small with
respect to the medium as a whole[ So\ as a _rst approximation\ we associate with each material
point an RVE\ and identify its state with that of the RVE[ The fact that a is much smaller than l

implies that the state does not vary appreciably over the RVE\ Fig[ 0"a#[ The mechanical state of
a material point of the continuum\ s\ then can be de_ned as an appropriate average of the state\ s¹\
of the RVE associated with that point[

In literature\ some methods have been proposed to derive models for statistically homogeneous
media[ These models relate the average of the strain to the average of the stress[ A large number
of analytical micromechanical techniques have been proposed for predicting the constitutive
response at the macroscopic level[ A comprehensive overview is given in Nemat!Nasser and
Hori "0882# and Mura "0876#[ These methods provide reasonably good estimates for the overall
macroscopic behaviour when the volume fraction of the heterogeneities is low[ However\ at higher
volume fractions\ substantial discrepancies with realistic behaviour may occur "e[g[\ Nemat!Nasser
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Fig[ 0[ A statistically homogeneous medium "a# and two statistically inhomogeneous materials "b# and "c#^ s represents
the value of the state variable and s¹ the average of s[

and Hori\ 0882# due to the increasing importance of the strain gradients "i[e[\ the variations of the
state variables\ Fig[ 0"c##[ Since these models only use the averages of the strain and the stress as
deformation and constitutive variables\ respectively\ the description becomes inaccurate[ In
addition\ these models are incapable of treating arbitrary distributions of shape\ size and location
of the heterogeneities\ that are frequently encountered in real materials "Ghosh and Moorthy\
0884#[ Many contributions have been proposed for periodic structures using the asymptotic
expansion technique\ for elastic solids by Hollister and Kikuchi "0881#\ Ghosh et al[ "0884# and
Boutin "0885#\ and for elasto!plastic solids\ by Ghosh and Moorthy "0884#[ The most important
drawback of these methods is the assumption of periodicity of the microstructure and the state
variables\ which clearly will be disturbed in localization phenomena\ where the separation of scales
principles does not hold anymore[

The separation of scales principle can be violated in two di}erent ways[ Either a is in the order
of the size of the specimen L\ in which case a is also in the order of l\ Fig[ 0"b#\ or a ð L\ but the
variations of the state s of the RVE are large with respect to the average s¹\ that is\ a ½ l\ Fig[ 0"c#[
In the _rst case\ we can no longer associate with each material point an RVE[ Instead\ each RVE
has to be associated with a region of the continuum[ Homogenization of this material therefore is
inappropriate[ In the second case\ which is typical for problems dealing with localization phenom!
ena\ where large strain gradients occur\ we are still allowed to associate with each material point
an RVE\ but we are not allowed to replace the state of the RVE by its average only[ The latter
simply does not contain enough information about the actual state of the RVE[ Therefore\
additional quantities in terms of the variations of the state s of the material points of the RVE
around the average s¹ should also be considered[ For example\ the variance or even higher order
"central# statistical moments could serve this purpose[ The continuum mechanical description of
strain softening materials poses another problem[ This softening behaviour can cause local loss of
ellipticity of the di}erential equations which describe the quasi!static deformation process[ As a
consequence\ the mathematical description becomes ill!posed and numerical solutions do not
converge to a physically meaningful solution of the spatial discretization "De Borst and Mu�hlhaus\
0880^ Vosbeek\ 0883^ Tvergaard and Needleman\ 0884#[

A remedy for the problems described above\ given by various authors\ is that when one allows
long range e}ects to enter the constitutive equations\ models can be obtained that do have a unique
solution\ in contrast to local models "e[g[\ De Borst et al[\ 0882#[ One way of including long range
e}ects is to introduce spatial averages of stress and:or strain in the constitutive equations[ This
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Fig[ 1[ Schematic stress:strain curves of the compressible Leonov model at di}erent strain rates[

leads to non!local models "Brekelmans\ 0882^ Tvergaard and Needleman\ 0884#[ Another solution
is to incorporate partial derivatives of stress and:or strain\ leading to gradient models "Tri!
antafyllidis and Aifantis\ 0875^ Peerlings et al[\ 0885#[ A third way is introducing rotational degrees
of freedom in addition to the usual translational degrees of freedom[ This leads to Cosserat
continua "Toupin\ 0851^ De Borst and Mu�hlhaus\ 0880#[ Rate!dependent models can also be
applied successfully to describe strain softening "Needleman\ 0877^ Sluys\ 0881^ Sluys and De
Borst\ 0881^ Wang et al[\ 0885#[

Hence\ a solution is to extend the state of the material point with additional statistical moments
of the state of the RVE[ The supplementary degrees of freedom of the macroscopic models should
be related to these statistical moments[ In this paper\ a Cosserat continuum will be used as a
macroscopic material model[ Then\ the mechanical state of each material point is de_ned by
stresses\ couple stresses\ strains and curvatures[ At the microscopic level\ we have selected a
viscoelastic material description\ in which the state is de_ned by stresses\ strains and strain rates[

A perforated polycarbonate plate is taken as a model!material[ As was already mentioned\
experiments "i[e[\ tensile tests# of Coomans "0884# have shown the importance of some parameters
like the hole stacking\ hole size\ hole distribution and strain rate on the mechanical behaviour of
the plate[ Using the _nite element method\ numerical simulations of the polycarbonate model!
material are possible[ The material properties are modelled making use of the _nite element
implementation of the compressible Leonov model "Smit\ 0883#[ This model essentially is a
Maxwell model with an Eyring viscosity describing the initial elastic and subsequent viscoplastic
behaviour of polymer glasses\ combined with intrinsic strain softening and a neo!Hookean model
representing strain hardening behaviour due to molecular orientation[ The resulting elasto!
viscoplastic constitutive model predicts the strain rate\ temperature and history dependent yield\
intrinsic strain softening and subsequent strain hardening of glassy polymers accurately[ For a
further elaboration on this model\ the reader is referred to Leonov "0865#\ Baaijens "0880#\ Hasan
et al[ "0882#\ Tervoort "0885#\ Tervoort et al[ "0885\ 0886#\ Timmermans "0886#[ A schematic
representation of some typical stressÐstrain curves for di}erent applied strain rates\ is given in Fig[
1[ However\ when the number of holes in the plate is increased\ the _nite element meshes will
become very complex for obtaining accurate results\ and\ hence\ the CPU!times and the memory
requirements become infeasible[
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Fig[ 2[ "a# The undeformed\ "b# the deformed mesh and "c# the resulting forceÐdisplacement curve of a tensile test on
the RVE[

Thus\ another way of describing the mechanical behaviour of the perforated plate is desired[ In
this paper\ we will use homogenization techniques[ First\ an RVE has to be de_ned[ Clearly\ when
the global stacking of the holes is cubic\ the RVE is a square with a centered hole[ A typical result
of a tensile test on this RVE is depicted in Fig[ 2[ The tensile test is a symmetrical load so only a
quarter of the RVE has to be modelled[ The undeformed mesh is shown in Fig[ 2"a#[ The matrix
material is modelled according to the compressible Leonov model using polycarbonate parameters[
On the right edge the displacements are prescribed such that a constant strain rate results[ On the
bottom edge the vertical displacements are suppressed\ whereas on the left edge the horizontal
displacements are zero[ Figure 2"b# shows the deformed mesh with contour lines of the equivalent
Von Mises stress[ The indicated numbers are in MPa[ The resulting loadÐdisplacement curve is
illustrated in Fig[ 2"c#[ Figure 2"b# can be identi_ed with Fig[ 0"c#] a ½ l[ Hence\ we have to use
homogenization techniques which result in non!local models\ because additional statistical
moments have to be included[

For simplicity\ some assumptions are made[ First of all\ we consider small macroscopic defor!
mations on account of the used deformation measure and macroscopic isotropic elastic material
behaviour on account of the used constitutive equations[ In addition\ we apply a constant strain
rate to the RVE\ since\ at the macroscopic level\ we use a time!independent description[ Also\ we
con_ne ourselves to the two!dimensional plane strain case[

1[ Cosserat theory

In the Introduction\ it was stated that non!local models are able to describe strain softening\ by
allowing long!range e}ects to enter the constitutive equations[ One way to include these e}ects is
to introduce averages of stress and:or strain[ Another solution is to incorporate partial derivatives
of stress and:or strain\ leading to the so!called gradient models[ In this paper\ we look at yet
another possibility which results in non!local models by introducing rotational degrees of freedom\
which leads to a so!called Cosserat continuum[

In classical continuum mechanics\ a material point has three degrees of freedom] the dis!
placements in three independent directions[ Di}erent displacements of two neighbouring points
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result in a deformation of the material[ This deformation then can be characterized by three normal
strains and three shear strains\ assuming symmetry of the strain tensor[

In Cosserat theory\ a material point has six degrees of freedom\ viz three translational degrees
of freedom "the displacements in three independent directions#\ and three rotational degrees of
freedom "the rotations around three independent axes#[ The deformation is not only characterized
by the di}erence in displacements of the two neighbouring bodies\ resulting in normal and shear
strains\ but also by the di}erence in rotations\ resulting in so!called curvatures[ A concise overview
of Cosserat mechanics is given\ which can be found in a more comprehensive form in Nowacki
"0875#[

Consider a material body that occupies a bounded region R[ Each point can be identi_ed with
a position vector x\ the displacements of a point are given by the vector u\ whereas the rotations
are given by the vector 8[ The strain tensor will be de_ned as

oji �
1ui

1xj

−ekji8k for i\ j � 0\ 1\ 2\ "0#

where eijk is the antisymmetric LeviÐCivita tensor] eijk � 0 when the sequence of indices "i\ j\ k# is
an even permutation of the sequence "0\ 1\ 2#\ i[e[ "0\ 1\ 2#\ "2\ 0\ 1# and "1\ 2\ 0#\ while eijk � −0 for
an odd permutation\ i[e[ "2\ 1\ 0#\ "0\ 2\ 1# and "1\ 0\ 2#[ If any two indices are equal\ eijk � 9[

Notice that\ in contrast to classical elasticity\ the strain tensor is asymmetric\ whilst the diagonals
are the usual normal strains[ In addition to these normal and shear strains\ Cosserat theory requires
the introduction of curvatures\ which can be explained as being the {strains| related to the di}erence
in rotation 8i of two points[ The curvatures are de_ned as components of the torsion tensor

kji �
18i

1xj

[ "1#

To give an interpretation of these kinematical quantities\ they are split up into a symmetric and a
skew!symmetric part\

o" ji# �
0
1
"oji¦oij# �

0
1 0

1ui

1xj

¦
1uj

1xi1\ "2#

oðjiŁ �
0
1
"oji−oij# �

0
1 0

1ui

1xj

−
1uj

1xi1−ekji8k[ "3#

Here\ "=# denotes the symmetric part\ whereas ð=Ł represents the skew!symmetric part of a tensor[
One may conclude that the symmetric part equals the classical strain de_nition\ whereas the skew!
symmetric part includes the in~uence of the rotations\ and the skew!symmetric part of the gradients
of the displacements "i[e[\ the linear rotation tensor#[

The external loads are represented by four vectors\ a stress vector t\ a volume load vector b\ a
moment vector m\ which is independent of t\ and a volume moment vector c[ For each subdomain
r with boundary 1r\ the quasi!static force and moment balance equations can then be written as\
respectively\
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g1r

t ds¦gr

b dx � 9 and g1r

"m¦x×t# ds¦gr

"c¦x×b# dx � 9[ "4#

Applying Gau)| theorem\ and using Cauchy|s theorem\ which states that ti � sjinj and mi � mjinj\
where sji is the Cauchy stress tensor and mji is de_ned as the couple stress tensor\ we get for the
balance laws

1sji

1xj

¦bi � 9 in V\ "5#

1mji

1xj

¦eijksjk¦ci � 9 in V[ "6#

The most noticeable di}erence in the constitutive quantities "in contrast to the conventional case#\
is the presence of independent moments\ that is\ independent of the stress tensor[ These moments
are inherent to the rotations as independent degrees of freedom[ Note also that in the last equation\
the volume load vector is absent as a result of using the _rst balance equation\ and that the stress
tensor now is not symmetric[

The constitutive equations can be formulated as follows\ assuming isotropic\ elastic material
behaviour\ according to Nowacki "0875#\

sji �
E

0¦n $o" ji#¦qoðjiŁ¦
n

0−1n
okkdji%\ "7#

mji �
D

0¦m $k" ji#¦hkðjiŁ¦
m

0−1m
kkkdji%\ "8#

where E is Young|s modulus\ n Poisson|s ratio\ q a parameter which de_nes the in~uence of the
anti!symmetric part of the strains\ D the equivalent of Young|s modulus for the couple stresses\ m

the equivalent of Poisson|s ratio for the couple stresses and h similar to q[ Analog to the strains\
the equation for the stresses can also be split up into a symmetric and anti!symmetric part to
interpret them\

s" ji# �
E

0¦n $o" ji#¦
n

0−1n
okkdji%\ "09#

sðjiŁ �
E

0¦n
eðjiŁ[ "00#

It is evident that the constitutive equations for the symmetric part is equal to the classical isotropic
elastic case\ i[e[ Hooke|s law[ The anti!symmetric part of the constitutive equations clearly relates
the anti!symmetric parts of the strains to the stresses[

2[ Finite element formulation

For practical applications involving inhomogeneous deformations\ the equilibrium equations
and the constitutive equations must be solved numerically[ To this end\ we will use the _nite
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element method[ The basis of the _nite element method is formed by the weak formulation of the
equilibrium equations\ that is obtained by multiplying these equations with weighting functions
and integrating over the domain V[ In the sequel\ we will neglect the volume forces and volume
moments\ which\ using "5# and "6#\ results in the following integral equation

gV $vi

1sji

1xj

¦ci 0eijksjk¦
1mji

1xj1% dV � 9 [vi\ ci\ "01#

where vi and ci are weighting functions[ Integrating by parts yields

gV $0
1vi

1xj

−ckekji1 sji¦
1ci

1xj

mji% dV � gG
ðviti¦cimiŁ dG [vi\ ci[ "02#

It is important to notice that the term between brackets in front of sji can be identi_ed with the
de_nition of the strains\ "0#[ The term in front of mji is analogous to the de_nition of the curvatures\
"1#[ So\ the de_nitions of the strain and curvature components follow in a natural way from the
weak form of the equilibrium equations[

For the two!dimensional plane strain case\ we de_ne a matrix with di}erential operators\

L �

F

H

H

H

H

H

H

H

f

1

1x0

9 9
1

1x1

9 9

9
1

1x1

1

1x0

9 9 9

9 9 −0 0
1

1x0

1

1x1

J
T

G

G

G

G

G

G

G

j

[ "03#

With this de_nition\ and introducing the columns oÝ� ðo00 o11 o01 o10 k02 k12ŁT\
sÝ � ðs00 s11 s01 s10 m02 m12ŁT and uÝ � ðu0 u1 8ŁT\ it follows that oÝ� LuÝ and sÝ � S"oÝ#\ the latter rep!
resenting the constitutive equations[ Using this and "03# accompanied with the de_nitions
wÝ �"v0 v1 c2#T and tÝ�"t0 t1 m2#T\ we obtain the weak form in matrix notation

gV
"LwÝ #TS"LuÝ# dV � gG

wÝTtÝdG[ "04#

In general\ "04# is a non!linear relation for the displacement _eld uÝ\ so we have to use an iterative
procedure to solve it[ Using a standard NewtonÐRaphson iteration procedure\ we decompose uÝ in
uÝ�¦duÝ\ where uÝ� is the displacement estimation and duÝ the correction of this estimation[ Linearising
the constitutive equation\ with respect to duÝ\ yields the linearised weak\ iterative formulation of
the equilibrium equations

gV
"LwÝ #T

1S

1oÝ
LduÝ dV � gG

wÝTtÝdG−gV
"LwÝ #TsÝ� dV\ "05#

where sÝ� represents the estimation of the stress\ as a result of the estimation of the displacement
_eld\ according to sÝ� � S"LuÝ�#[



O[ van der Sluis et al[ : International Journal of Solids and Structures 25 "0888# 2082Ð2103 2190

Fig[ 3[ Four noded isoparametric Cosserat element[

Next\ we will formulate the discretized equilibrium equations for a four noded quadrilateral\
isoparametric plane strain Cosserat element\ with 2 degrees of freedom at each node\ being two
displacements and one rotation "Fig[ 3#[

When the total domain V is subdivided into e elements with area Ve\ the discretized form of "05#
can be written as follows\

s
e gVe

"LwÝ #T
1S

1oÝ
LduÝ dVe � s

e gGe

wÝTtÝdGe−s
e gVe

"LwÝ #TsÝ� dVe[ "06#

This equation is interpolated\ making use of an isoparametric formulation "e[g[\ Zienkiewicz\
0866#[ Following Galerkin|s method\ the interpolation functions for the displacements and the
weighting functions are chosen identically\

uÝ"j\ h# � NT"j\ h#uÝe\ and wÝ "j\ h# � NT"j\ h#wÝ e\ "07#

with uÝe and wÝ e columns containing the values of the degrees of freedom and the test functions at
the nodes\ respectively[

Writing oÝ"uÝ# � LuÝ � BuÝe\ we are able to rewrite "06# as

s
e

"wÝ e#T gVe

"B#T
1S

1oÝ
B dVeduÝe � s

e

"wÝ e#T gGe

NtÝdGe−s
e

"wÝ e#T gVe

"B#TsÝ� dVe[ "08#

We now de_ne the element sti}ness matrix

Ke � gVe

"B#T
1S

1oÝ
B dVe[ "19#

The right hand side in matrix form can be written as

rÝe � gGe

NtÝdGe−gVe

"B#TsÝ� dVe[ "10#

The characteristic _nite element equations to be solved\ may now be formulated as
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Fig[ 4[ The equivalent stress vs equivalent strain for the given de_nition of the E!modulus[

KeduÝe � rÝe[ "11#

Anticipating the strain softening behaviour resulting from our homogenization process\ we will
de_ne a function for the E!modulus of the macroscopic medium[ This function is given in terms
of a\ yet to be determined\ equivalent strain measure[ In some cases\ the above described element
does not su}er from mesh dependency\ and can be used to simulate localization of deformation\
or\ more generally\ strain softening behaviour "De Borst\ 0889#[

3[ Softening material behaviour

The de_nition of the E!modulus as function of the equivalent strain\ as depicted in Fig[ 4\ is
given by

E"oeq# � E9 9 ¾ oeq ³ o9\

E"oeq# � E9 $"0¦z#
o9

oeq

−z% oeq − o9[ "12#

Here\ E9 is the initial "elastic# modulus\ o9 is the strain at which softening occurs\ and z is the slope
of the softening branch[

From dimension analysis of the constitutive equations "7# and "8#\ it follows that the ratio of D
and E is of dimension m1[ The obvious choice then is to relate E and D by introducing a length
scale parameter l\

D"oeq# � E"oeq#l 1[ "13#

The relation between the stresses and strains can then be written as

sÝ �
E"oeq#
0¦n

CoÝ\ "14#

where C is the matrix
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C �

F

H

H

H

H

H

H

H

H

H

H

H

H

f

0−n

0−1n

n

0−1n
9 9 9 9

n

0−1n

0−n

0−1n
9 9 9 9

9 9
0¦q

1
0−q

1
9 9

9 9
0−q

1
0¦q

1
9 9

9 9 9 9 l1P"0¦n# 9

9 9 9 9 9 l1P"0¦n#

J

G

G

G

G

G

G

G

G

G

G

G

G

j

[ "15#

Notice the introduced parameter P\ which equals "0¦h#:1"0¦m#[ For the plane strain case\ the
two parameters h and m solely occur in combination with each other and therefore can be replaced
by just one parameter P[ This means a reduction in the number of constitutive parameters to be
determined in our homogenization process\ as will be seen in the forthcoming sections[

The derivatives of sÝ with respect to oÝ are needed to formulate the element stiffness matrix\ which
can readily be found from "14#[ We follow De Borst "0889# and De Borst and Mu�hlhaus "0880# for
the de_nition of the equivalent strain\ who used oeq � z2J in which J\ for a micro!polar continuum\
is given by

J � 0
3
od
ijo

d
ij¦

0
3
od
ijo

d
ji¦

0
1
l1kijkij\ "16#

where the superscript d represents the deviatoric part of a tensor[ For the two!dimensional plane
strain case\ it is easily seen that

oeq � zo1
00¦o1

11−o00o11¦
2
3
"o01¦o10#1¦2

1
l1"k1

02¦k1
12#[ "17#

4[ Homogenization towards Cosserat media

In this section\ the homogenization procedure will be discussed[ For the macroscopic level\ we
have chosen to use Cosserat mechanics to describe the mechanical behaviour of the equivalent
homogeneous continuum[ The corresponding theory was discussed in the preceding sections[ For
the microscopic level\ we have selected a compressible Leonov model\ which is assumed to predict
the strain rate\ temperature\ and history dependent yield\ intrinsic strain softening and subsequent
strain hardening of glassy polymers "Leonov\ 0865^ Baaijens\ 0880^ Hasan et al[\ 0882^ Tervoort\
0885^ Tervoort et al[\ 0885\ 0886^ Timmermans\ 0886#[

De_nitions are necessary that de_ne the relations between the macroscopic and microscopic
state variables[ The di.culty in obtaining these relations resides from the fact that on the two
di}erent levels\ we have di}erent state variables[ At the macrolevel\ these variables are stresses\
couple stresses\ strains and curvatures[ In contrast\ the material points in the microstructure are
identi_ed by stresses and strains only\ since we prescribe a constant strain rate[ The relation
between these two levels is not straightforward[ Applying the de_ned microÐmacro relations\ we
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have been able to derive boundary conditions\ which may be applied to the representative volume
element[ The obtained boundary conditions are formulated in terms of displacement _elds\ par!
ameterized by the macroscopic deformation quantities[ Obviously\ these quantities are identi_ed
by Cosserat theory[ It is important to observe that the displacements of the RVE are not con_ned
to periodic deformations\ since we employ the developed {non!local| boundary conditions[ This is
contradictory to the traditionally used homogenization techniques\ which are based on periodicity
demands of the state variables "e[g[\ Boutin\ 0885^ Ghosh and Moorthy\ 0884^ Ghosh et al[\ 0884#[
From the response of the RVE\ and by using the microÐmacro de_nitions\ the macroscopic stresses
and couple stresses are calculated[ Since the prescribed values of the macroscopic strains and
curvatures are known\ and\ subsequently\ the macroscopic stresses and couple stresses can be
calculated\ we are able to determine the parameters in the constitutive equations for the equivalent
homogeneous continuum[ The most obvious choice of the length scale parameter l in the Cosserat
model\ is to equate this parameter to the RVE!size a[ Since our macroscopic model is time!
independent\ we globally {switch o}| the time!dependent behaviour of our microscopic model\ by
prescribing constant strain rates on the boundary of the RVE[ By doing so\ we have assumed that
the determined macroscopic material parameters only hold for these strain rates[ In accordance
with Fig[ 1\ it will be clear that di}erent prescribed strain rates will result in di}erent values for
the macroscopic parameter set[

As was already seen in the Introduction\ the _rst step of our homogenization process is to de_ne
the relation between the macroscopic and microscopic quantities[ From now on\ the macroscopic
quantities are denoted with a superimposed bar[ As a starting point\ we have to provide a de_nition
for the microscopic {couple stresses|\ which inherently will be dependent on the Cauchy stress
tensor[ For this purpose\ we consider a microscopic material body R[ Each point can be identi_ed
with a position y[ External loads are represented by a stress!vector t\ de_ned on the boundary 1r
of the region r\ which is an arbitrary subdomain of R[ For each subdomain r\ the quasi!static
moment balance equation can be written as

g1r

"y×t# ds � 9\ "18#

when neglecting volume loads[ Applying Cauchy|s theorem\ which states that ti � sjinj\ we have

g1r

eilkylsjknj ds � 9[ "29#

When we de_ne a {moment tensor| as mji � eilkylsjk "inherently dependent on sji#\ and applying
Gau)| theorem\ we have for all r

1mji

1yj

� 9 in R[ "20#

Notice the analogy with "6# for the Cosserat model[ However\ the antisymmetric part of the stress
tensor now is zero\ and also\ the introduced {moment tensor| mji is dependent on the stress!tensor
sji[

When V is the volume of the RVE\ and y the RVE coordinate system\ we propose the following
de_nitions\
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u¹i �
0
V gR

ui dy\ "21#

8¹ i �
0
V gR

8i dy\ with eijk8k �
0
1 0

1uj

1yi

−
1ui

1yj1\ "22#

0
1
"o¹ji¦o¹ij# �

0
V gR

oji dy\ "23#

k¹ ji �
0
V gR

kji dy\ with kji �
18i

1yj

\ "24#

0
1
"s¹ ji¦s¹ ij# �

0
V gR

sji dy\ "25#

m¹ ji �
0
V gR

mji dy\ with mji � eilkylsjk[ "26#

At this moment\ we do not have any de_nitions regarding the skew!symmetric parts of the
macroscopic stress and strain tensors[

In the Appendix\ the derivation of the microscopic boundary conditions is discussed[ The
resulting displacement _elds read

u0 � u90−ay1¦o¹00y0¦
0
1
"o¹01¦o¹10#y1−k¹02y0y1−k¹12y

1
1\ "27#

u1 � u91¦ay0¦o¹11y1¦
0
1
"o¹01¦o¹10#y0¦k¹02y

1
0¦k¹12y0y1[ "28#

Note that a can be explained as a rigid rotation\ and u90 and u91 as rigid displacements[ It should
also be observed that we are indeed able to prescribe the macroscopic deformation quantities
independently to the RVE\ of course\ with the exception of the anti!symmetric part of the strain
tensor[ In the next section\ the parameters in the proposed constitutive eqns "7# and "8# for the
equivalent homogeneous continuum will be _tted by prescribing the displacement _elds on the
RVE[

5[ Determining the macroscopic constitutive equations

The parameters used in the constitutive eqns "7# and "8# and the eqns "12# for the E!modulus\
now have to be _tted onto _nite element calculations of the RVE[ The RVE\ with dimensions
a×a\ represents a regular cubic hole stacking\ where the {hole angle| is 89> "see also Fig[ 2#[

Applying the boundary conditions\ derived in the Appendix\ on the RVE will result in stresses
and moments in the RVE\ which will be averaged over the RVE region V\ according to the
de_nitions[ The evolution of the averaged state variables are used to _t the macroscopic parameters
in the constitutive equations[ Note that the parameter q cannot be _tted\ since the anti!symmetric
part is not included in these de_nitions[ In the present paper\ we have used q � 9[7[ Two tests have
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Fig[ 5[ The undeformed and deformed mesh of the tensile test on the RVE[ The deformed mesh shows contour bands
of the equivalent Von Mises stress[

to be performed on the RVE to _t the parameters[ The _rst is a true tensile test and the second is
a bending test[

5[0[ Tensile test

The tensile test is applied to the RVE by prescribing displacements on y0 � 2a[ The applied
"constant# strain rate is o¾ � 09−1 s−0[ Because of loading symmetry\ only one quarter of the RVE
has to be modelled "Fig[ 5#[ The boundary conditions read

u0"a\ y1# � o¹00a\ on y0 � a\ "39#

t1"y0\ a# � 9\ on y1 � a[ "30#

The undeformed and deformed RVE is depicted in Fig[ 5[ It can be observed that the deformation
of the RVE is not periodic\ as was already mentioned[ The averaged stresses s¹ 00 and s¹ 11 can be
determined from the reaction forces on the boundaries[ The averages strain o¹11 can be determined
from the displacements on the boundaries[ Since the EÞ!modulus is a function of the equivalent
strain in the macroscopic model de_ned by "12#\ the average equivalent strain also has to be
calculated from the values of the averaged strains\ according to "17#[

From Fig[ 6"a#\ the typical strain softening behaviour of s¹ 00 can be noticed\ whereas it can be
seen that s¹ 11 � 9 is con_rmed[ Then\ the constitutive eqn "14# for s¹ 11 � 9 yields the following
expression for Poisson|s ratio\

n¹ � −
o¹11

o¹00−o¹11

[ "31#

This relation can be used to determine n¹ as a function of o¹eq and is depicted for the two RVE|s in
Fig[ 6"b#[

When substituting "31# into "14# for s¹ 00\ we obtain a relation for the EÞ!modulus\

EÞ�"0−n¹1#
s¹00

o¹00

[ "32#
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Fig[ 6[ "a# The averaged stresses in MPa\ the calculated "*# and _tted "= = =# of "b# Poisson|s ratio and "c# Young|s
modulus as functions of the equivalent strain[

Table 0
Results of the _tting procedure

EÞ� EÞ9ð"0¦z¹#"o¹9:o¹eq#−z¹Ł

n¹ ð*Ł PÞ ð*Ł EÞ9 ðMPaŁ z¹ ð*Ł o¹9 ð*Ł
9[1703 9[8223 0282[46 9[9353 9[9398

This relation can be used to determine EÞ as a function of the equivalent strain and is depicted in
Fig[ 6"c#[ The _tted results for Poisson|s ratio and Young|s modulus are also depicted in this _gure[
Figure 6"b# shows that n¹ is _tted as a constant value[ The reason for this is that in the proposed
constitutive equations\ n¹ is also constant[ This and the small variation of n¹ justi_es the choice of a
constant value obtained from a least squares algorithm[ The averaged function of the EÞ!modulus
is _tted\ as illustrated in Fig[ 6"c#\ with the values given in Table 0[

5[1[ Bendin` test

The purpose of the bending test is to determine the parameter PÞ[ The curvature k¹ 02 will be used
to prescribe the displacements on the boundaries y0 � 2a[ For the same purpose\ k¹ 12 could be
prescribed\ since the RVE is assumed isotropic[

The boundary conditions now read

u0"2a\ y1# � 3k¹02ay1\ "33#

u1"2a\ y1# � k¹02a
1\ on y0 � 2a\ "34#

t1"y0\ 2a# � 9\ on y1 � 2a[ "35#
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Fig[ 7[ The undeformed and the deformed meshes of the bending test[ The deformed mesh shows contour bands of the
equivalent Von Mises stress[

Fig[ 8[ "a# The couple stress in MPa m and "b# the calculated "*# and _tted "= = =# values for the bending modulus[

The undeformed and deformed meshes are depicted in Fig[ 7[ Again\ the typical strain softening
behaviour can be recognized in Fig[ 8"a#[

Observing the resemblance between Fig[ 8"a# and Fig[ 6"a#\ we may _t PÞ using the equation for
the EÞ!modulus[ From "14#\ it holds that

m¹02 � EÞl1PÞk¹02 � DÞk¹02\ "36#

where we de_ne DÞ as the bending modulus and m¹ 02 is calculated according to "26#[ Thus\ the
relations between the stresses and strains on one hand\ and the couple stresses and curvatures on
the other hand\ are identical\ except for a constant l1PÞ\ where l equals a\ the size of the RVE[ The
_tted results are given in Fig[ 8"b#[ The _tted curves are obtained by using the given relation of
the EÞ!modulus\ with the values of z¹ and o¹9 from the _tting results of the tensile test[ However\
instead of using EÞ9\ we _tted PÞ "36#[ Again\ using a least squares algorithm\ we obtain the value
for this constant\ which is also given in Table 0[
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Fig[ 09[ "a# Specimen and boundary conditions\ with a the RVE!size\ "b# and "c# meshes of the homogenized and direct
simulations[

Fig[ 00[ "a# The resulting loadÐdisplacement curves\ and "b# and "c# contour bands of the equivalent Von Mises stress[

6[ Application

In this section\ we will simulate a tensile test on a single!edge notched perforated strip with a
_xed strain rate of o¾ � 09−1 s−0[ The specimen and the boundary conditions are shown in Fig[
09"a#[ To validate the obtained results of the homogenized response\ also a {direct| simulation is
performed in which the material is modelled according to the compressible Leonov model[

The resulting forceÐdisplacement curves for these two meshes from Fig[ 09"b# and 09"c#\ are
shown in Fig[ 00"a#[ Two di}erent curves can be observed for the homogenized results] for a coarse
mesh\ corresponding to the one depicted in Fig[ 09"b# and for a _ne mesh\ where we applied a
mesh re_nement factor of two in both the horizontal as well as the vertical direction[ From these
curves\ we can conclude that the results of the Cosserat simulation are mesh!independent\ hence\
Cosserat mechanics can be applied to describe strain softening[ A good agreement between the
homogenized and the direct simulations is obtained[ It is very important to note that the length!
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scales of the two simulations di}er[ It is clear that the homogenized simulation holds for the
macrolevel\ whereas the direct results apply to the microlevel[ Nevertheless\ the forceÐdisplacement
curves can be compared both quantitatively as well as qualitatively[ This is due to the fact that
these quantities are de_ned at the edges of the specimen[ In Fig[ 00"b# and "c#\ also the deformed
meshes are shown with contour bands of the equivalent Von Mises stress[ However\ these equivalent
stress values for the two simulations\ both being local quantities\ cannot be compared quan!
titatively[ As was mentioned before\ this is caused by the di}erence in length!scales[ The mere
purpose of the contour plots of the equivalent stresses in Fig[ 00"b# and "c# is to indicate an overall
picture of the nature of the deformation pattern\ and of course\ no direct comparison is allowed[
More precisely\ the macroscopic stresses can be seen as the averaged microscopic stresses[ A good
agreement can be noticed in the deformation pattern\ which also indicates that the proposed
method can be used successfully to homogenize heterogeneous strain softening materials[

7[ Discussion

In this paper a method is described to devise constitutive equations for heterogeneous polymers
based on micromechanics using homogenization procedures[ For this purpose\ a perforated poly!
carbonate plate was taken as a model material[ The mechanical behaviour of polycarbonate was
modelled using a compressible Leonov model\ which captures the characteristics of the deformation
behaviour of amorphous solid polymers\ such as rate!dependent yield\ intrinsic softening and
progressive strain hardening[ Since this material exhibits localization of deformation\ standard
homogenization methods which relate averages of the stress to averages of the strain over a
representative part of the material "RVE#\ cannot be applied to derive a macroscopic constitutive
equation[ Instead\ the material description has to be supplemented with additional information[

It appeared that Cosserat theory provides the desired additional quantities being rotational
degrees of freedom[ The _nite element formulation of the Cosserat theory was discussed assuming
the two!dimensional plane strain case[ Anticipating strain softening behaviour\ the constitutive
equations were formulated as a non!linear function of the deformation[ This was achieved by
de_ning the elasticity modulus as a piece!wise linear function of the equivalent strain[ The capability
of describing strain softening strongly depended on the choice of the material parameters[ It might
be worthwhile expanding the formulation to three dimensions[ This will add more degrees of
freedom of the macroscopic model and therefore its capability of describing strain softening
behaviour might improve[

The homogenization of the model material was discussed[ De_nitions were proposed relating
the macroscopic Cosserat and microscopic Leonov state variables[ It will be clear that these
relations a}ect the results of the homogenization process\ that is\ the macroscopic constitutive
equations[ With these de_nitions\ it was possible to devise boundary conditions for the RVE[ By
independently prescribing macroscopic deformation quantities on the RVE "using these dis!
placement _elds#\ we were able to calculate the corresponding macroscopic stresses and coupleÐ
stresses from the response of the RVE[ Thus\ the constitutive equations for the equivalent homo!
geneous continuum could be determined[ The parameters used in the macroscopic constitutive
equations were _tted onto _nite element calculations by applying two di}erent displacement _elds
to the RVE[ The parameter de_ning the skew!symmetric part could not be determined by the lack
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of de_nitions of this part[ The averaging of the microscopic quantities in the bending test revealed
that some variables did not vanish\ which was in con~ict with the prescribed boundary conditions[
This can be seen as an indication of the error of the chosen macroscopic constitutive model[
Comparison of the loadÐdisplacement curves obtained by the homogenized Cosserat model with
the {direct| FE!simulations using the compressible Leonov model\ gives us reason to believe that
the proposed homogenization method can be applied successfully to heterogeneous materials[

Appendix

In order to derive macroscopic boundary conditions\ or\ more precisely\ displacement _elds\ we
_rst de_ne the macroscopic potential energy CÞ � CÞ"o¹ji\ k¹ ji# as the volume average of its microscopic
equivalent C � C"oji#\

CÞ"o¹ji\ k¹ ji# �
0
V gR

C"oji# dy[ "37#

It should be noted that the macroscopic potential energy is a function of both the strains and the
curvatures\ whereas the microscopic potential energy only is a function of the strains[ Obviously\
this is due to the choice of macroscopic and microscopic models[ Using the de_nition of the
potential energy\ the macroscopic stress and the macroscopic couple stress can be written as

s¹ ji �
1CÞ
1o¹ji

�
0
V gR

1C
1o¹ji

dy �
0
V gR

1C
1olk

1olk

1o¹ji

dy �
0
V gR

slk

1olk

1o¹ji

dy\ "38#

m¹ ji �
1CÞ
1k¹ ji

�
0
V gR

slk

1olk

1k¹ ji

dy[ "49#

As a starting point\ we use expression "38# for the macroscopic stress[ Then\ with "25#\ we have

0
1 gR

slk 0
1olk

1o¹ji

¦
1olk

1o¹ij1 dy � gR

sji dy[ "40#

Note that both sji and oji are symmetric[ For the couple stresses\ we use "49# with the de_nition
"26#\

gR

slk

1olk

1k¹ ji

dy � gR

eilkyl0sjk dy[ "41#

Equations "40# and "41# hold for all values of the stresses sji[ We will write out these equations for
the two!dimensional case\ taking the sum over repeated indices[ The three equations for the stresses
for " j\ i# �"0\ 0#\ "0\ 1# and "1\ 1#\ and the two equations for " j\ i# �"0\ 2# and "1\ 2# for the couple
stresses are then given by\ respectively\

gR $s00 0
1o00

1o¹00

−01¦s011
1o01

1o¹00

¦s11

1o11

1o¹00% dy � 9\ "42#
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gR $s00

0
1 0

1o00

1o¹10

¦
1o00

1o¹011¦s01 0
1o01

1o¹10

¦
1o01

1o¹01

−01¦s11

0
1 0

1o11

1o¹10

¦
1o11

1o¹011% dy � 9\ "43#

gR $s00

1o00

1o¹11

¦s011
1o01

1o¹11

¦s11 0
1o11

1o¹11

−01% dy � 9\ "44#

gR $s00 0
1o00

1k¹02

¦y11¦s011 0
1o01

1k¹02

−
0
1

y01¦s11

1o11

1k¹02% dy � 9\ "45#

gR $s00

1o00

1k¹12

¦s011 0
1o01

1k¹12

¦
0
1

y11¦s11 0
1o11

1k¹12

−y01% dy � 9[ "46#

Because these _ve equations hold for all stresses\ the coe.cients of s00\ s01 and s11 have to vanish[
This results in

o00 � o¹00−k¹02y1\ "47#

o11 � o¹11¦k¹12y0\ "48#

o01 � 0
1
"o¹01¦o¹10#¦

0
1
k¹02y0−

0
1
k¹12y1[ "59#

Integrating "47# with respect to y0 and "48# with respect to y1\ yields

u0 � o¹00y0−k¹02y0y1¦`"y1#\ "50#

u1 � o¹11y1−k¹12y0y1¦f"y0#[ "51#

When we calculate o01 of these displacements and equal this result with "59#\ we have

−k¹02y0¦`?"y1#¦k¹12y1¦f ?"y0# � o¹01¦o¹10¦k¹02y0−k¹12y1\ "52#

where ? represents di}erentiation with respect to its argument[ Rearranging this equation with y0!
terms to the left!hand side of the equal sign\ and y1!terms to the right!hand side\ and noting that
the left!hand side can only be equal to the same constant\ a say\ and integrating\ we have\

f"y0# � u91¦ay0¦
0
1
"o¹01¦o¹10#y0¦k¹02y

1
0\ "53#

`"y1# � u90−ay1¦
0
1
"o¹01¦o¹10#y1−k¹12y

1
1\ "54#

where u90 and u91 are integration constants[ Finally\ substituting these results in "50# and "51#\ we
obtain the expressions for the boundary conditions\ which are consistent with the de_nitions of
the symmetric part of the stress tensor and the strain tensor\

u0 � u90−ay1¦o¹00y0¦
0
1
"o¹01¦o¹10#y1−k¹02y0y1−k¹12y

1
1\ "55#

u1 � u91¦ay0¦o¹11y1¦
0
1
"o¹01¦o¹10#y0¦k¹02y

1
0¦k¹12y0y1[ "56#
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